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ABSTRACT Image super-resolution (SR) is a fundamental task in computer vision that has received
significant attention due to its applications in enhancing image quality across various fields, from medical
imaging to satellite data processing. The emergence of diffusion models and advanced deep learning
techniques has transformed how super-resolution is approached, offering novel frameworks to improve
low-resolution images with unprecedented accuracy. This paper presents a detailed survey of the latest
advancements in diffusion-based models for SR, exploring methodologies such as wavelet amplification,
federated learning, and dataset pruning. We discuss not only the theoretical underpinnings of these
approaches but also their real-world implications, particularly in blind SR tasks where ground truth
high-resolution data is unavailable. Furthermore, we provide an overview of current challenges, such as
computational complexity and the need for better generalization in unseen domains, along with potential
solutions. The analysis covers six key contributions to the field from recent research papers, all of which
have significantly advanced our understanding and capabilities in image super-resolution. By synthesizing
these developments, this survey aims to serve as a comprehensive resource for researchers and practitioners
in the field.

INDEX TERMS blind super-resolution, computational complexity, deep learning, diffusion models, image

super-resolution, wavelet amplifications

I. INTRODUCTION

Image super-resolution (SR) refers to the process of enhanc-
ing the resolution of an image, transforming it from low-
resolution (LR) to high-resolution (HR) using computational
techniques. Over the last decade, SR has evolved signifi-
cantly, shifting from traditional interpolation-based methods
such as bicubic or bilinear interpolation to more advanced
deep learning-driven approaches. These modern techniques
utilize large datasets and neural networks to produce supe-
rior results, enhancing image clarity, sharpness, and detail
retention. Among these developments, diffusion models have
emerged as a powerful tool in SR. Grounded in proba-
bilistic frameworks, diffusion models iteratively refine noisy
inputs to generate high-quality HR images. These models
have proven particularly effective in domains where preserv-
ing fine details is crucial, such as medical imaging, high-
definition video processing, and satellite imagery [1], [2].

Traditional SR methods encountered challenges like over-
smoothing and limited generalization to unseen data or di-
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verse degradation processes. Earlier techniques, which heav-
ily relied on handcrafted features or simple interpolation
schemes, often struggled to capture the intricate textures and
high-frequency details essential for producing perceptually
convincing HR images. These limitations became more ap-
parent as SR applications extended to complex fields such
as medical imaging and remote sensing, where even minor
losses in detail could have significant consequences. Clas-
sical SR approaches, including interpolation methods and
early convolutional neural network (CNN)-based models,
often resulted in blurred or artifact-laden outputs, especially
in areas requiring precise detail reconstruction. In response,
diffusion-based models were introduced to overcome these
issues, offering a framework that excels in reconstructing
lost high-frequency details by reversing the process of noise
addition during image reconstruction [3].

Diffusion models, initially developed within the field of
generative modeling, were designed to generate high-quality
synthetic images by simulating a reverse diffusion process.
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In the forward diffusion process, noise is gradually added
to an image, progressively degrading it. The reverse process,
learned by the model, incrementally removes the noise, effec-
tively restoring lost information. When applied to SR tasks,
this reverse diffusion process helps recover high-frequency
details that are typically missing from LR images. This
characteristic makes diffusion models well-suited for SR,
where the primary objective is to predict and reconstruct
the fine details that were lost during downsampling, such as
textures and edges. Studies have shown that diffusion models
consistently outperform traditional CNN-based SR methods,
particularly in terms of recovering details and improving
image fidelity, making them highly effective for a wide range
of SR applications [4].

The application of diffusion models in SR has seen par-
ticularly promising results in blind super-resolution tasks,
where the degradation process applied to the LR images is
unknown. In blind SR, models must enhance the resolution
without prior knowledge of how the image was degraded,
which makes the task inherently more challenging than in
non-blind SR scenarios. The flexibility of diffusion models
allows them to adapt well to diverse degradation types with-
out requiring explicit knowledge of the underlying degrada-
tion mechanism. This adaptability offers a significant advan-
tage over conventional SR models, which typically assume a
fixed or predefined degradation process. For example, a re-
cent survey of diffusion-based approaches in SR [4] demon-
strates the versatility of these models across various image
domains, including natural scenes, medical images, and satel-
lite data. The ability of diffusion models to generalize across
different types of degradation has made them highly effective
in real-world applications, where degradation processes are
often complex and unknown [5], [6].

In parallel, significant progress has been made with
wavelet-based methods in SR, which provide a multi-scale
approach to analyzing image data. Wavelet transforms allow
images to be decomposed into different frequency bands,
making it possible to enhance various scales independently.
This decomposition is particularly useful for SR tasks, as it
allows for targeted enhancement of high-frequency details,
such as edges and textures, without affecting low-frequency
background information. Wavelet-based SR methods, when
combined with deep learning models, have demonstrated
considerable improvements in reconstructing HR images,
especially in cases involving complex textures or fine de-
tail recovery. These methods also offer a complementary
approach to diffusion models, and recent hybrid frameworks
that combine wavelet transforms with diffusion models have
shown great promise in boosting SR performance even fur-
ther [2].

Another significant advancement in SR has been the use
of federated learning frameworks. Federated learning en-
ables the training of models across multiple devices or loca-
tions without requiring centralized access to all data, which
preserves privacy and enhances model generalization. This
decentralized approach is particularly relevant in privacy-
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sensitive domains, such as medical imaging, where data can-
not be easily shared across institutions. Federated learning
has also been effective in improving the generalization of
SR models to different degradation patterns by allowing
models to learn from a wider variety of data sources without
compromising privacy. Moreover, the integration of federated
learning with diffusion and wavelet-based SR methods holds
great potential for advancing the state of the art in privacy-
preserving, distributed SR systems [7].

In this paper, we explore various methodologies devel-
oped for SR, focusing on diffusion models, wavelet-based
approaches, and federated learning frameworks. We examine
their contributions to the field, the specific challenges they
address, and the limitations that remain. Additionally, we
provide a critical analysis of recent advancements and pro-
pose future research directions that could further improve SR
technologies, expanding their applications in real-world sce-
narios where high-quality image reconstruction is paramount

[8].

Il. DIFFUSION MODELS AND IMAGE
SUPER-RESOLUTION

Diffusion models represent a novel and powerful probabilis-
tic framework in the domain of image super-resolution (SR).
These models have garnered significant attention for their
ability to address some of the key challenges associated
with SR tasks, particularly the preservation of fine details
such as textures, edges, and other high-frequency features
that often degrade in traditional methods. The fundamental
concept behind diffusion models is relatively straightforward
yet highly effective. They progressively introduce noise to
an image, transforming it from its original state into a noise-
like version. The reverse diffusion process is then tasked with
recovering the image by iteratively denoising it, refining the
details and ultimately reconstructing a high-resolution (HR)
image from the low-resolution (LR) input.

In traditional image super-resolution approaches, meth-
ods such as bicubic interpolation or convolutional neural
networks (CNNs) are commonly employed. These methods
work by learning to upscale the image in a deterministic
manner, typically focusing on reconstructing the underlying
structure of the image with minimal artifacts. However, they
tend to struggle with recovering the fine-grained details that
are essential for producing perceptually convincing HR im-
ages. By contrast, diffusion models excel at preserving and
enhancing these high-frequency components. This is partic-
ularly beneficial in applications where texture sharpness and
detail recovery are critical, such as in high-definition video
processing, satellite imagery, and medical imaging, where the
loss of minute details can impact the usefulness of the output.

The reverse diffusion process, which is central to the
success of diffusion models in SR, operates by progressively
removing noise from the corrupted image. During training,
the model is exposed to various levels of noise corruption and
learns to reverse this process, ultimately recovering the im-
age’s details. What makes diffusion models particularly well-
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FIGURE 1. High-Resolution Image Synthesis with Latent Diffusion Models

suited for super-resolution tasks is their capacity to model
the distribution of possible high-frequency details that might
have been lost in the low-resolution input. This probabilistic
reconstruction process enables the model to create sharp,
detailed images that go beyond simple pixel interpolation,
providing a more realistic and perceptually pleasing output.

One of the notable advancements in the field of diffusion-
based SR is the integration of wavelet transforms into the
diffusion framework, an approach referred to as the diffusion-
wavelet model. The wavelet transform is a mathematical tool
used to decompose images into different frequency compo-
nents. This allows the model to process each frequency band
separately, targeting high-frequency details—such as textures
and edges—while preserving the low-frequency information
that defines the overall structure of the image. The advan-
tage of combining diffusion models with wavelet transforms
lies in the increased precision with which the model can
handle high-frequency components. Rather than treating the
entire image uniformly, as standard diffusion models do, the
diffusion-wavelet model focuses on enhancing the specific
details that are critical for high-quality image restoration.
This approach has been particularly effective in satellite
image super-resolution and medical imaging applications,
where fine detail recovery is paramount [9].

To illustrate the effectiveness of the diffusion-wavelet
model, consider the case of satellite image super-resolution.
In satellite imaging, spatial resolution is often limited by the
sensor capabilities, leading to blurred or indistinct images
of the Earth’s surface. However, fine details—such as road
networks, buildings, or vegetation—are essential for accurate
interpretation and analysis. By applying a wavelet-based de-
composition, the diffusion-wavelet model is able to focus on
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recovering these high-frequency details while ensuring that
the broader structural elements of the image remain intact.
The result is a much clearer, higher-resolution image that
retains both the necessary details and overall coherence.

In a similar vein, the diffusion-wavelet model has proven
to be valuable in medical imaging, where preserving high-
frequency details is critical for accurate diagnosis. For exam-
ple, in MRI or CT scans, the fine details of tissues and organs
are often obscured by noise or low-resolution sampling, mak-
ing it difficult for doctors to interpret the images correctly.
The diffusion-wavelet approach enables the reconstruction
of these finer details without introducing artifacts, leading to
more accurate and reliable diagnostic images. This method
has shown significant promise in enhancing the quality of
medical scans, thereby improving the overall effectiveness of
medical imaging technologies.

Another important innovation in diffusion-based SR is the
development of the Yoda model [10], which introduces an
area-masked diffusion process. Traditional diffusion models
apply noise uniformly across the entire image, which can be
inefficient, especially when certain areas of the image require
more detail enhancement than others. The Yoda model ad-
dresses this by selectively applying the diffusion process to
specific regions of the image that are most critical for detail
recovery. For instance, in portrait image super-resolution, the
Yoda model concentrates its efforts on key facial features
such as the eyes, lips, and hair, which demand higher reso-
lution and sharper details. Meanwhile, less important regions
of the image, such as the background, are processed with less
computational intensity. This selective diffusion process not
only improves the efficiency of the model but also enhances
the perceptual quality of the output by focusing on the areas
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that matter most.

The area-masked approach used in the Yoda model can
be particularly advantageous in real-time applications where
computational efficiency is a concern. By reducing the
amount of computation needed for less critical areas of
the image, the Yoda model is able to generate high-quality
outputs more quickly than standard diffusion models, making
it more suitable for applications such as live video streaming
or interactive image editing. This model has also been shown
to be effective in medical image super-resolution, where
specific regions of a scan—such as areas containing tumors
or other abnormalities—require enhanced detail, while the
surrounding tissue can be processed with lower resolution.
The ability to selectively enhance critical regions while re-
ducing computational overhead makes the Yoda model a
versatile and efficient tool for SR tasks.

Despite the significant progress made by diffusion models
in image super-resolution, there are still several challenges
that need to be addressed, particularly in terms of compu-
tational efficiency. Diffusion models are inherently iterative,
requiring many steps to reverse the noise degradation and
fully reconstruct the HR image. This iterative process, while
effective in preserving fine details, is computationally expen-
sive and time-consuming, especially when compared to more
straightforward SR methods like convolutional neural net-
works (CNNs) or generative adversarial networks (GANS).
In real-time applications such as live video processing or
gaming, where fast inference times are critical, diffusion
models may struggle to meet performance requirements due
to their slower processing speeds.

To mitigate these computational challenges, several strate-
gies have been proposed. One promising approach is to
reduce the number of steps required in the reverse diffusion
process. Researchers are exploring approximation techniques
that allow the model to achieve similar results with fewer
iterations, potentially through adaptive step-size methods that
accelerate convergence without sacrificing the quality of the
output. Another avenue of research involves improving the
efficiency of the training algorithms themselves, potentially
by incorporating techniques such as parallelization across
multiple processing units or leveraging specialized hardware
like Graphics Processing Units (GPUs) and Tensor Process-
ing Units (TPUs). These optimizations could significantly
reduce the time required to generate high-resolution images,
making diffusion models more practical for real-time appli-
cations.

There is also ongoing research into combining diffusion
models with other deep learning architectures to improve
their efficiency. For example, hybrid models that integrate
CNNs with diffusion processes could potentially offer the
best of both worlds: the speed and simplicity of CNNs for
coarse reconstruction, followed by the fine-detail recovery
capabilities of diffusion models. Additionally, researchers
are investigating the use of self-attention mechanisms within
the diffusion framework to allow the model to focus more
intelligently on different parts of the image during the re-
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construction process, further improving both the quality and
efficiency of the SR process.

diffusion models have emerged as a highly promising
approach to image super-resolution, offering significant ad-
vantages over traditional methods, particularly in terms of
detail recovery and perceptual quality. Innovations such as
the diffusion-wavelet model and the Yoda model have further
expanded the capabilities of these models, enabling them to
handle a wide range of SR tasks with greater precision and
efficiency. However, the computational demands of diffu-
sion models remain a significant hurdle to their widespread
adoption, particularly in real-time or resource-constrained
environments. Moving forward, research efforts are likely to
focus on optimizing the efficiency of these models, either by
reducing the number of iterations required or by leveraging
more advanced hardware and algorithms. As these challenges
are addressed, diffusion models are poised to play an increas-
ingly important role in advancing the field of image super-
resolution.

lll. WAVELET-BASED TECHNIQUES IN
SUPER-RESOLUTION

Wavelet transforms have been widely recognized as powerful
tools in image processing, particularly due to their ability to
perform multi-scale analysis. In the domain of image super-
resolution (SR), wavelet-based techniques offer a unique
advantage: the capacity to decompose an image into dif-
ferent frequency bands, each representing varying levels of
detail and texture. This decomposition allows for targeted
enhancement of the high-frequency components, which are
most responsible for textures, edges, and fine details in an
image. After processing each frequency band independently,
the transformed components are recombined, resulting in a
higher-resolution image with improved visual quality. The
application of wavelets in SR has proven to be especially
effective in handling images with complex textures and fine
details, where traditional SR methods often struggle to pre-
serve these intricate features [11].

Wavelet-based methods offer the advantage of localizing
both spatial and frequency information, which is crucial
when dealing with images containing diverse and detailed
textures. This localization property allows wavelet trans-
forms to capture fine details at multiple scales, making
them particularly suitable for applications that require high-
resolution outputs, such as satellite imaging, medical diag-
nostics, and high-definition video processing. By focusing
on enhancing different frequency bands separately, wavelet-
based SR techniques can preserve the overall structure of the
image while simultaneously improving the clarity of smaller,
intricate details.

One of the most promising developments in this area is the
Differential Wavelet Amplifier (DWA) model introduced in
[12]. The DWA model utilizes wavelet transforms to focus
specifically on amplifying high-frequency details in low-
resolution (LR) images. The model targets the regions of the
image that contain the most critical visual information, such
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TABLE 1. Comparison of Diffusion Models in Image Super-Resolution (SR)

medical imaging

Model Key Feature Application Domain Computational
Efficiency
Standard Diffusion Progressive noise-based recovery of details High-definition video, satellite imagery, | Moderate

Diffusion-Wavelet [9]

Wavelet-based frequency band enhancement

Satellite image SR, medical imaging

Moderate to High

Yoda [10]

Area-masked diffusion for selective detail
enhancement

Portraits, medical scans

High

Hybrid Diffusion-CNN Combines CNN’s speed with diffusion’s de- | Real-time applications, general SR tasks Very High
tail recovery
Input Interpolated Discrete Wavelet | low-pass high-pass
—
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FIGURE 2. Super-Resolution Image Reconstruction Using Wavelet Based Patch

as textures and edges, which are typically more challenging
to upscale using traditional convolutional or generative ap-
proaches. By employing wavelet transforms, the DWA model
decomposes the LR image into its frequency components
and selectively enhances the high-frequency bands. These
bands correspond to the finer details that are often smoothed
out or lost in standard SR techniques. Once amplified, these
components are recombined with the lower-frequency bands,
resulting in a high-resolution (HR) image with significantly
improved perceptual quality.

The success of the DWA model lies in its ability to sep-
arate and treat different image features according to their
frequency content. By amplifying the high-frequency de-
tails, the model ensures that textures and edges are pre-
served and enhanced, which is crucial for producing images
with high perceptual quality. The model has demonstrated
substantial improvements over traditional methods in terms
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of texture sharpness and edge preservation, particularly in
applications like portrait image enhancement, where facial
features demand fine detail recovery, and satellite image
super-resolution, where landscape features such as roads,
rivers, and buildings require sharp boundaries for accurate
interpretation [13].

Despite these advancements, wavelet-based techniques in
SR are not without challenges. One significant issue is the
computational complexity of wavelet transforms, particularly
when applied to large images or video frames. The process
of decomposing an image into multiple frequency bands and
then processing each band independently can be computa-
tionally expensive, especially for high-resolution outputs. As
a result, wavelet-based SR methods can be slower compared
to more direct approaches like CNN-based models or gen-
erative adversarial networks (GANs). This complexity poses
a particular challenge in real-time applications, such as live
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video streaming or interactive image editing, where rapid
inference is crucial.

Another challenge associated with wavelet-based SR
methods is their performance when dealing with noisy or
artifact-laden images. Noise in the image can contaminate
the high-frequency bands, leading to artifacts or erroneous
amplifications when the wavelet transform is applied. To
address this, recent research has focused on developing more
robust preprocessing techniques that can denoise the image
before applying the wavelet decomposition. For instance,
combining wavelet-based SR with total variation denoising
or non-local means filtering has been proposed to reduce
noise while maintaining high-frequency detail [14]. These
preprocessing steps can help mitigate the negative impact of
noise on the wavelet-enhanced image, but they add further
complexity to the overall SR pipeline [15].

In response to these challenges, hybrid models that in-
tegrate wavelet transforms with other SR techniques have
emerged. One particularly promising direction involves com-
bining diffusion models with wavelet-based approaches. Dif-
fusion models are excellent at iteratively refining an image’s
structure by modeling the image’s underlying data distribu-
tion. By pairing diffusion models with wavelet transforms,
researchers have created hybrid models that leverage the
strengths of both approaches. In such models, diffusion pro-
cesses handle the overall structure and coarse reconstruction
of the image, while wavelet transforms are employed to
enhance the finer, high-frequency details. This dual-process
approach enables the model to generate high-quality HR
images with improved texture preservation and perceptual
sharpness, without the excessive computational demands of
a pure wavelet-based model.

For example, in applications such as medical imaging,
where the accuracy of high-frequency details can be crit-
ical for diagnosis, this hybrid approach allows for more
precise detail recovery. Fine structures like blood vessels,
tissue boundaries, and minute anatomical features are better
preserved, leading to clearer and more accurate diagnostic
images. The success of these hybrid models suggests that
further exploration in combining diffusion and wavelet-based
techniques may yield even more effective SR methods, of-
fering a balance between computational efficiency and high-
quality image reconstruction [16].

A compelling case for the practical benefits of wavelet-
based SR techniques is seen in satellite image super-
resolution. Satellite images typically suffer from resolution
limitations due to the constraints of onboard sensors. While
conventional methods might upscale these images, the lack
of attention to high-frequency details often results in blurry
outputs that are less useful for detailed analysis. By using
wavelet transforms, satellite images can be decomposed into
frequency bands that represent different scales of texture and
structure. Enhancing the high-frequency components allows
for the recovery of details like building edges, road net-
works, and natural features, which are vital for applications
in urban planning, environmental monitoring, and disaster
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management. This selective enhancement improves both the
resolution and the interpretability of satellite images, making
wavelet-based SR an invaluable tool in geospatial analysis.

wavelet-based techniques provide a robust and flexible
framework for addressing the challenges of image super-
resolution. Their ability to localize and enhance specific
frequency bands makes them particularly well-suited for
tasks that require the recovery of fine details and tex-
tures. Despite the computational complexity associated with
wavelet transforms, their integration into modern SR frame-
works—especially when combined with diffusion mod-
els—offers a promising direction for future research. Hy-
brid models that leverage the strengths of both diffusion
and wavelet-based methods appear to offer the best of both
worlds, allowing for high-quality SR with more efficient
processing. Ongoing research in this area is likely to focus on
further optimizing these techniques for real-time applications
and improving their robustness in the presence of noise
and other artifacts. As wavelet-based techniques continue to
evolve, they are expected to play an increasingly important
role in enhancing the quality of high-resolution images across
a variety of domains, from medical diagnostics to geospatial
analysis and beyond.

IV. FEDERATED LEARNING AND DATASET PRUNING IN
SUPER-RESOLUTION

Federated learning (FL) has emerged as a transformative
approach in distributed machine learning, enabling models to
be trained across decentralized data sources while preserv-
ing data privacy. In the context of image super-resolution
(SR), FL has the potential to revolutionize how SR models
are developed, especially in domains like medical imaging,
satellite surveillance, and sensitive personal image enhance-
ment, where confidentiality and privacy are paramount. By
leveraging FL, it becomes possible to train robust SR models
across a distributed network of data holders, such as hospitals
or research institutions, without requiring the centralization
of potentially sensitive or proprietary datasets. This paradigm
shift is particularly valuable in environments where compli-
ance with data protection regulations, such as the General
Data Protection Regulation (GDPR) in the European Union,
is critical [17].

Traditional centralized machine learning approaches re-
quire data aggregation in a single location for training, which
raises significant privacy and security concerns, especially in
fields like healthcare. In contrast, federated learning allows
for the training of models by sharing updates or gradients
rather than the raw data itself. This enables the development
of SR models in a decentralized manner, making it partic-
ularly appealing for privacy-sensitive domains like medical
imaging, where patient data cannot be readily shared across
institutions. The FL framework for blind SR proposed by
[7] presents a novel method for training SR models across
multiple institutions while safeguarding data privacy. In this
framework, local models are trained on decentralized image
datasets—such as low-resolution (LR) and high-resolution
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TABLE 2. Comparison of Wavelet-Based and Hybrid SR Techniques

Model Key Feature Advantages Challenges
Wavelet-Based SR [11] Decomposition into frequency bands for tar- | Excellent for texture preservation and multi- | Computational
geted enhancement scale detail recovery complexity, sensitivity

to noise

Differential Wavelet Amplifier | Amplifies high-frequency details in LR im- | Enhances texture sharpness and edge clarity | Computational cost,

(DWA) [12] ages requires preprocessing to
mitigate noise

Hybrid Diffusion-Wavelet Model | Combines diffusion models with wavelet | Balances structure recovery with fine detail | Increased model complex-

[16] transforms for detailed reconstruction enhancement ity, slower inference times

(HR) medical images—at each participating institution. In-
stead of transferring the data itself, only the model parame-
ters or updates are shared with a central server, where they
are aggregated to form a global model. This method effec-
tively enables collaborative training of SR models without
compromising patient confidentiality.

The FL approach to SR offers several advantages beyond
privacy. One of the key benefits is the reduction of overfitting
to a particular dataset. Overfitting is a significant issue in
image SR, especially when models are trained on a limited
or homogenous dataset, as it can reduce the model’s abil-
ity to generalize to unseen data. Federated learning helps
mitigate this risk by exposing the model to diverse datasets
from different sources without centralizing the data. This
distributed nature of training improves the generalization
capability of the SR model, as the model learns from a variety
of image types, resolutions, and noise characteristics [18].
For example, in a medical imaging context, an SR model
trained using federated learning can learn from diverse imag-
ing modalities—MRI, CT scans, or X-rays—from multiple
hospitals, enabling it to generalize better across different
patient demographics and scanning technologies. Similarly,
in satellite imaging, FL can facilitate the training of SR
models across datasets from different geographical regions
or satellite sensors, thereby enhancing the model’s robustness
and adaptability.

However, federated learning also presents certain chal-
lenges in the context of SR. One major issue is the communi-
cation overhead associated with transferring model updates
between the central server and decentralized clients. Since
the process requires multiple rounds of communication to
update the global model, bandwidth and latency can become
significant bottlenecks, particularly in resource-constrained
environments or when working with large models typical of
deep learning applications. Moreover, federated learning can
suffer from heterogeneous data distributions, where the data
available at each institution differs significantly in terms of
quality, resolution, or noise characteristics. This heterogene-
ity can lead to model bias, where the global model performs
better on data similar to that of the institutions contributing
the most updates. Techniques such as personalized federated
learning, where local models are fine-tuned after the global
update to cater to specific local data distributions, are cur-
rently being explored to address this issue [19].

In tandem with federated learning, dataset pruning has
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emerged as a critical technique for optimizing the perfor-
mance of SR models. Dataset pruning involves selectively
reducing the size of the training dataset by removing redun-
dant or irrelevant samples, which can significantly enhance
the efficiency of the training process. In SR tasks, where
large-scale high-resolution image datasets are often required,
training on such massive datasets can become computation-
ally prohibitive. Dataset pruning addresses this by focusing
training on the most informative samples, thereby reducing
the overall computational cost while maintaining—or even
improving—the performance of the model [20].

The goal of dataset pruning in SR is to maintain high
model performance while using a smaller and more represen-
tative training set. Redundant images that provide little addi-
tional learning benefit or outlier images that may confuse the
model are removed. In the context of blind super-resolution,
where the degradation process of the LR image is unknown,
this technique becomes particularly relevant. For example, in
satellite imaging, large volumes of data are collected over
time, but not all images are equally informative for SR tasks.
Pruning can help eliminate images that are too similar to each
other or those that contain excessive noise or artifacts that do
not reflect real-world conditions [21].

A comprehensive study on dataset pruning techniques for
SR, as explored in [20], demonstrated that pruned datasets
can significantly improve both training efficiency and the re-
sulting model’s performance. The study showed that careful
pruning strategies could reduce training times by up to 30%
without sacrificing the quality of the HR outputs. In some
cases, pruning even led to improved SR performance, as the
model was less likely to overfit on noisy or irrelevant data.
This is particularly important for large-scale SR tasks, where
datasets can become bottlenecks during training. For in-
stance, in medical image super-resolution, where the datasets
are often vast and consist of heterogeneous sources such
as different imaging modalities and patient demographics,
pruning can ensure that only the most representative and
informative samples are used for training.

One effective approach to dataset pruning is the use of
active learning strategies, where the model iteratively selects
the most informative samples for training. This process re-
duces the overall size of the dataset while ensuring that the
remaining data contributes the most to model performance.
Additionally, uncertainty-based pruning techniques, where
samples that the model is least confident about are retained
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while more predictable samples are discarded, have been
applied in SR tasks to great effect. Such methods help focus
the model’s learning on challenging images that offer more
substantial learning gains. In the context of medical imag-
ing, this could mean focusing on scans with varying levels
of noise or degradation, ensuring the model is capable of
handling a wide range of real-world inputs [22].

While both federated learning and dataset pruning hold
great promise for advancing SR technologies, integrating
these approaches with existing models, such as diffusion-
based or wavelet-based SR techniques, remains an open area
of research. Diffusion models, which iteratively denoise and
reconstruct high-frequency details, are inherently resource-
intensive, making them ideal candidates for optimization
through dataset pruning. By applying pruning strategies to
diffusion-based SR tasks, the training process can be made
more efficient without sacrificing detail recovery or percep-
tual quality. Furthermore, federated learning could be used to
train diffusion-based SR models across distributed datasets,
such as medical or satellite images, without compromising
data privacy. This would allow researchers to develop more
robust models that generalize across a variety of real-world
conditions while preserving the privacy of the underlying
data.

Similarly, the integration of FL with wavelet-based SR
models presents an exciting avenue for future research.
Wavelet-based methods, which excel at decomposing images
into frequency components for targeted enhancement, can
be computationally demanding. By distributing the train-
ing process across decentralized nodes, FL can help scale
wavelet-based SR methods to larger, more diverse datasets.
Additionally, dataset pruning could be used to reduce the
computational load by eliminating redundant data in each fre-
quency band, thus making the training process more efficient.

federated learning and dataset pruning represent two criti-
cal advancements in the quest for more scalable, efficient, and
privacy-preserving SR models. Federated learning enables
the training of SR models across decentralized datasets,
offering both privacy and improved generalization across
diverse data sources. Meanwhile, dataset pruning provides
a practical means to reduce the computational cost of train-
ing SR models, particularly in large-scale applications. As
research continues, the integration of these techniques with
advanced SR models, such as those based on diffusion or
wavelet transforms, holds the potential to further push the
boundaries of image super-resolution, enabling faster, more
efficient, and more robust solutions across various domains,
from medical imaging to satellite surveillance.

V. CONCLUSION

I sincerely apologize for the confusion and the deletion of ci-
tations in the previous responses. I'll make sure to re-include
the correct references in the conclusion section, as well as
integrate all the relevant citations that were inadvertently
omitted. Here’s the updated conclusion with proper citations:
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VI. CONCLUSION

The field of image super-resolution (SR) has witnessed rapid
advancements over recent years, primarily driven by the
development of diffusion models, wavelet-based techniques,
and federated learning frameworks. These cutting-edge ap-
proaches have redefined the capabilities of SR models, en-
abling them to generate high-quality, high-resolution (HR)
images from low-resolution (LR) inputs with unprecedented
accuracy and detail. Each technique addresses key challenges
in SR, ranging from improving fine texture recovery and
high-frequency detail preservation to ensuring model training
remains privacy-compliant and computationally efficient.

Diffusion models have emerged as one of the most promis-
ing tools in SR. They excel at restoring high-frequency de-
tails through an iterative process that progressively denoises
images, making them invaluable in applications where pre-
cision is critical, such as medical imaging, satellite imaging,
and high-definition video enhancement. These models offer
a powerful probabilistic framework that captures and restores
textures and sharp edges that are often smoothed over by
conventional SR techniques. However, diffusion models are
computationally demanding due to their iterative nature,
which requires multiple steps to fully recover high-resolution
outputs. Future research is therefore focusing on optimiz-
ing their computational efficiency, possibly through adaptive
step-size methods and hardware acceleration to enable real-
time applications [23] [24].

Wavelet-based techniques provide an additional layer of
sophistication, particularly suited for multi-scale analysis.
Wavelet transforms allow for the decomposition of images
into different frequency components, enabling SR models to
enhance fine details selectively. This targeted enhancement
of high-frequency textures, coupled with the preservation of
low-frequency structural integrity, makes wavelet-based SR
techniques ideal for domains like satellite imaging, where
sharpness in fine-grained textures is crucial, and medical
diagnostics, where minute detail preservation is essential for
accurate diagnoses [11]. Despite their potential, wavelet-
based methods are computationally intensive, particularly
when applied to large images, which limits their real-time
applicability. Optimizing wavelet-based SR models through
hybrid approaches, such as combining wavelet transforms
with diffusion processes, could help overcome these compu-
tational challenges.

Federated learning (FL) represents a revolutionary frame-
work for training SR models on decentralized data without
compromising data privacy. This is particularly important in
fields like healthcare, where sensitive data—such as medi-
cal images—cannot be shared across institutions. Federated
learning facilitates the collaborative training of SR models
by aggregating model updates rather than raw data, enabling
models to generalize across diverse datasets. This not only
ensures that privacy concerns are addressed but also improves
model robustness by exposing it to a wide variety of data
from different sources. However, federated learning also
presents challenges, such as communication overhead and
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TABLE 3. Comparison of Federated Learning and Dataset Pruning in Super-Resolution (SR)

Technique Key Feature

Advantages Challenges

Federated Learning (FL) [7]
tutions

Decentralized training across multiple insti-

Communication overhead,
heterogeneity of data dis-
tribution

Preserves data privacy, improves
model generalization

Dataset Pruning [20] Selective reduction of dataset size

Reduces training cost, mitigates
overfitting

Risk of losing important
samples, requires careful
selection strategy

FL with Diffusion-Based SR [18]
els

Combines FL with diffusion-based SR mod-

Preserves privacy, enables training
on larger, diverse datasets

High computational cost
of diffusion models

Pruning with Wavelet-Based SR
[11] enhancement models

Applies pruning to wavelet-based frequency

Reduces computational load, fo- Sensitive to noise in
cuses on most informative samples data, requires  robust
preprocessing

data heterogeneity, which need to be addressed for more
widespread adoption in SR applications [7] [17].

In addition to federated learning, dataset pruning has
proven to be an effective technique for optimizing SR perfor-
mance. Dataset pruning involves selectively reducing the size
of the training dataset by removing redundant or irrelevant
samples. This reduces the computational cost of training
without sacrificing model performance and, in some cases,
can even improve model accuracy by preventing overfitting.
For large-scale SR tasks, such as those in medical or satellite
imaging, where datasets can be massive, pruning provides
a crucial mechanism for improving training efficiency. By
focusing only on the most informative samples, models can
be trained faster and more effectively [20].

Both federated learning and dataset pruning hold enor-
mous potential for making SR models more scalable and
efficient. By integrating these methods with advanced SR
models—such as diffusion-based or wavelet-based tech-
niques—the scalability of SR can be vastly improved. For
example, federated learning can be used to train wavelet-
based SR models across decentralized datasets from multiple
institutions, while dataset pruning can help optimize the
training of diffusion-based SR models by eliminating un-
necessary computational overhead. Such hybrid approaches
are likely to yield SR models that are both more efficient
and more effective at generating high-quality HR outputs,
especially in computationally constrained environments.

Despite the tremendous progress in SR research, several
significant challenges remain. The computational demands of
models based on diffusion processes and wavelet transforms
can be prohibitive, particularly for real-time applications
such as live video streaming or interactive image editing.
These models often require a large number of iterative steps
to achieve high-quality results, which limits their utility in
time-sensitive environments. Overcoming this limitation will
require further research into optimizing the efficiency of
these models, either by reducing the number of iterations or
by leveraging more efficient training architectures. Addition-
ally, the increasing complexity of SR models necessitates the
development of scalable training strategies that can handle
large datasets and diverse inputs without compromising per-
formance or efficiency.

the future of image super-resolution lies in the contin-
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ued advancement of diffusion models, wavelet-based ap-
proaches, federated learning, and dataset pruning. Each of
these techniques brings unique strengths to the table, and
their hybridization offers exciting possibilities for pushing
the boundaries of what SR models can achieve. As the field
continues to evolve, these innovations will play a critical
role in developing faster, more efficient, and more robust SR
models that can meet the demands of real-world applications.
Whether in medical imaging, satellite surveillance, or video
enhancement, the next generation of SR technologies will be
essential for generating high-resolution images with unparal-
leled detail and precision [23] [24] [7] [20].

By integrating federated learning and dataset pruning into
existing SR frameworks, the scalability and privacy of these
models can be significantly enhanced, opening the door to
a wider range of applications and more efficient training
workflows. The next wave of research will likely focus on
improving the efficiency of these methods, optimizing their
computational performance, and exploring new ways to com-
bine them with other emerging SR technologies. In doing
so, SR models will become more accessible and scalable,
enabling widespread deployment across diverse industries
and use cases.
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